来自:cnblogs.
值得一提的是:
nginx目前支持的负载均衡算法有wrr、sh(支持一致性哈希)、fair(本人觉得可以归结为lc)。但nginx作为均衡器的话,还可以一同作为静态资源服务器。
keepalived+ipvsadm比较强大,目前支持的算法有:rr、wrr、lc、wlc、lblc、sh、dh
keepalived支持集群模式有:NAT、DR、TUN
nginx本身并没有提供session同步的解决方案,而apache则提供了session共享的支持。
好了,解决了以上的问题之后,系统的结构如下:
阶段四、数据库读写分离化
上面我们总是假设数据库负载正常,但随着访问量的的提高,数据库的负载也在慢慢增大。那么可能有人马上就想到跟应用服务器一样,把数据库一份为二再负载均衡即可。但对于数据库来说,并没有那么简单。假如我们简单的把数据库一分为二,然后对于数据库的请求,分别负载到A机器和B机器,那么显而易见会造成两台数据库数据不统一的问题。那么对于这种情况,我们可以先考虑使用读写分离的方式。
读写分离后的数据库系统结构如下:
这个结构变化后也会带来两个问题:
主从数据库之间数据同步问题
应用对于数据源的选择问题
解决问题方案:
我们可以使用MYSQL自带的master+slave的方式实现主从复制。
采用第三方数据库中间件,例如mycat。mycat是从cobar发展而来的,而cobar是阿里开源的数据库中间件,后来停止开发。mycat是国内比较好的mysql开源数据库分库分表中间件。
阶段五、用搜索引擎缓解读库的压力数据库做读库的话,常常对模糊查找力不从心,即使做了读写分离,这个问题还未能解决。以我们所举的交易网站为例,发布的商品存储在数据库中,用户最常使用的功能就是查找商品,尤其是根据商品的标题来查找对应的商品。对于这种需求,一般我们都是通过like功能来实现的,但是这种方式的代价非常大。此时我们可以使用搜索引擎的倒排索引来完成。
搜索引擎具有以下优点:
它能够大大提高查询速度。
引入搜索引擎后也会带来以下的开销:
带来大量的维护工作,我们需要自己实现索引的构建过程,设计全量/增加的构建方式来应对非实时与实时的查询需求。
需要维护搜索引擎集群
搜索引擎并不能替代数据库,他解决了某些场景下的“读”的问题,是否引入搜索引擎,需要综合考虑整个系统的需求。引入搜索引擎后的系统结构如下:
阶段六、用缓存缓解读库的压力1、后台应用层和数据库层的缓存
随着访问量的增加,逐渐出现了许多用户访问同一部分内容的情况,对于这些比较热门的内容,没必要每次都从数据库读取。我们可以使用缓存技术,例如可以使用google的开源缓存技术guava或者使用memcacahe作为应用层的缓存,也可以使用redis作为数据库层的缓存。
另外,在某些场景下,关系型数据库并不是很适合,例如我想做一个“每日输入密码错误次数限制”的功能,思路大概是在用户登录时,如果登录错误,则记录下该用户的IP和错误次数,那么这个数据要放在哪里呢?假如放在内存中,那么显然会占用太大的内容;假如放在关系型数据库中,那么既要建立数据库表,还要简历对应的javabean,还要写SQL等等。而分析一下我们要存储的数据,无非就是类似{ip:errorNumber}这样的key:value数据。对于这种数据,我们可以用NOSQL数据库来代替传统的关系型数据库。
2、页面缓存除了数据缓存,还有页面缓存。比如使用HTML5的localstroage或者cookie。
优点:
减轻数据库的压力
大幅度提高访问速度
缺点:
需要维护缓存服务器
提高了编码的复杂性
值得一提的是:
缓存集群的调度算法不同与上面提到的应用服务器和数据库。最好采用“一致性哈希算法”,这样才能提高命中率。这个就不展开讲了,有兴趣的可以查阅相关资料。
加入缓存后的结构:
阶段七、数据库水平拆分与垂直拆分我们的网站演进到现在,交易、商品、用户的数据都还在同一个数据库中。尽管采取了增加缓存,读写分离的方式,但随着数据库的压力继续增加,数据库的瓶颈越来越突出,此时,我们可以有数据垂直拆分和水平拆分两种选择。
7.1、数据垂直拆分
垂直拆分的意思是把数据库中不同的业务数据拆分道不同的数据库中,结合现在的例子,就是把交易、商品、用户的数据分开。
优点:
解决了原来把所有业务放在一个数据库中的压力问题。
可以根据业务的特点进行更多的优化
缺点:
需要维护多个数据库
问题:
需要考虑原来跨业务的事务
跨数据库的join
解决问题方案:
我们应该在应用层尽量避免跨数据库的事物,如果非要跨数据库,尽量在代码中控制。
我们可以通过第三方应用来解决,如上面提到的mycat,mycat提供了丰富的跨库join方案,详情可参考mycat官方文档。
垂直拆分后的结构如下:
7.2、数据水平拆分
数据水平拆分就是把同一个表中的数据拆分到两个甚至多个数据库中。产生数据水平拆分的原因是某个业务的数据量或者更新量到达了单个数据库的瓶颈,这时就可以把这个表拆分到两个或更多个数据库中。
优点:
如果我们能客服以上问题,那么我们将能够很好地对数据量及写入量增长的情况。
问题:
访问用户信息的应用系统需要解决SQL路由的问题,因为现在用户信息分在了两个数据库中,需要在进行数据操作时了解需要操作的数据在哪里。
主键的处理也变得不同,例如原来自增字段,现在不能简单地继续使用了。
如果需要分页,就麻烦了。
解决问题方案:
我们还是可以通过可以解决第三方中间件,如mycat。mycat可以通过SQL解析模块对我们的SQL进行解析,再根据我们的配置,把请求转发到具体的某个数据库。
我们可以通过UUID保证唯一或自定义ID方案来解决。
mycat也提供了丰富的分页查询方案,比如先从每个数据库做分页查询,再合并数据做一次分页查询等等。
数据水平拆分后的结构:
阶段八、应用的拆分8.1、拆分应用
随着业务的发展,业务越来越多,应用越来越大。我们需要考虑如何避免让应用越来越臃肿。这就需要把应用拆开,从一个应用变为俩个甚至更多。还是以我们上面的例子,我们可以把用户、商品、交易拆分开。变成“用户、商品”和“用户,交易”两个子系统。
拆分后的结构:
问题:
这样拆分后,可能会有一些相同的代码,如用户相关的代码,商品和交易都需要用户信息,所以在两个系统中都保留差不多的操作用户信息的代码。如何保证这些代码可以复用是一个需要解决的问题。
解决问题:
通过走服务化的路线来解决
8.2、走服务化的道路
为了解决上面拆分应用后所出现的问题,我们把公共的服务拆分出来,形成一种服务化的模式,简称SOA。
采用服务化之后的系统结构:
优点:
相同的代码不会散落在不同的应用中了,这些实现放在了各个服务中心,使代码得到更好的维护。
我们把对数据库的交互放在了各个服务中心,让”前端“的web应用更注重与浏览器交互的工作。
问题:
如何进行远程的服务调用
解决方法:
我们可以通过下面的引入消息中间件来解决
阶段九、引入消息中间件随着网站的继续发展,我们的系统中可能出现不同语言开发的子模块和部署在不同平台的子系统。此时我们需要一个平台来传递可靠的,与平台和语言无关的数据,并且能够把负载均衡透明化,能在调用过程中收集调用数据并分析之,推测出网站的访问增长率等等一系列需求,对于网站应该如何成长做出预测。开源消息中间件有阿里的dubbo,可以搭配Google开源的分布式程序协调服务zookeeper实现服务器的注册与发现。
引入消息中间件后的结构:
以上的演变过程只是一个例子,并不适合所有的网站,实际中网站演进过程与自身业务和不同遇到的问题有密切的关系,没有固定的模式。只有认真的分析和不断地探究,才能发现适合自己网站的架构。
推荐阅读:
技术:分布式唯一ID极简教程
职场:程序员职业规划
分享:2T架构师学习资料干货分享
觉得有帮助?请转发给更多人!
架构师小秘圈,聚集10万架构师的小圈子!不定期分享技术干货,行业秘闻!汇集各类奇妙好玩的话题和流行动向!长按左侧图片,扫码加入架构师